Q1.A	cons	isting	X-ray tube produces a beam of X-rays. The beam passes through a diaphragm of two pairs of lead sheets which can be moved at right angles to each other, hrough an aluminium filter.	
	(a)	(i)	State the use of the lead sheets.	
				(1)
		(ii)	State the use of the aluminium filter.	
				(1)
	(b)		en a monochromatic beam of X-ray photons is passed through an aluminium et of thickness 2.7 mm, its intensity is reduced by 8.3%.	
		Calc	ulate the mass attenuation coefficient of aluminium for these X-rays.	
		State	e an appropriate unit for your answer.	
			density of aluminium = 2700 kg m ⁻³	
		mas	ss attenuation coefficient unit unit	(5) arks)

Q2. (i) Explain what is meant by the *half-value thickness* of lead for X-rays.

	near attenuation of				ns.
half value	thickness of lead	for 90 keV X-	ray photons =	= 12mm.	
					•
	ickness of lead notions to 5.0 % of				of
					of
90 keV X-ray ph		the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	
90 keV X-ray ph	otons to 5.0 % of	the intensity	ncident on th	e lead.	

Q3.

		(3)
		(-,
(b)	A monochromatic X-ray beam of intensity 3.2×10^{-2} W m ⁻² is incident on an aluminium sheet. Calculate the thickness of aluminium required to reduce the intensity of the X-ray beam to 1.2×10^{-2} W m ⁻² .	
	mass attenuation coefficient of aluminium, $\mu_m = 0.012 \text{ m}^2 \text{ kg}^{-1}$	
	density of aluminium, ρ = 2700 kg m ⁻³	
		(2)
	(Total 6 n	(3) narks)

Q4.(a) The diagram shows a rotating-anode X-ray tube. Complete the labelling of the **three** numbered arrows in the diagram.

(c)	Define for a material,

the illiear a	tteriuation coemcient, į	и,	

(i)

	(ii)	the half-value thickness.	
			(2)
d)	shee	conochromatic X-ray beam of intensity 6.0 W m ⁻² is incident on an aluminium et of thickness 2.0 mm. For these X-rays, the half-value thickness of aluminium 2 mm. Calculate the intensity of the transmitted beam.	
		(Total 11 m.	(3) arks)